
LogiTorch: A PyTorch-based library
for logical reasoning on natural language

Chadi Helwe, Chloé Clavel, Fabian Suchanek
Télécom Paris, Institut Polytechnique de Paris, France

{chadi.helwe, chloe.clavel, suchanek}@telecom-paris.fr

Abstract

Logical reasoning on natural language is one
of the most challenging tasks for deep learning
models. There has been an increasing inter-
est in developing new benchmarks to evaluate
the reasoning capabilities of language models
such as BERT. In parallel, new models based
on transformers have emerged to achieve ever
better performance on these datasets. However,
there is currently no library for logical reason-
ing that includes such benchmarks and models.
This paper introduces LogiTorch, a PyTorch-
based library that includes different logical rea-
soning benchmarks, different models, as well
as utility functions such as co-reference reso-
lution. This makes it easy to directly use the
preprocessed datasets, to run the models, or to
finetune them with different hyperparameters.
LogiTorch is open source and can be found on
GitHub1.

1 Introduction

Machine reasoning over natural language has been
an object of research since the 1950s (Newell and
Simon, 1956; McCarthy et al., 1960). One prototyp-
ical task in the domain is Textual Entailment: Given
a premise (such as “I ate a cake”), the goal is to
determine whether a hypothesis (“I ate something
sweet”) is entailed or not. Other logical reason-
ing tasks are question answering, multiple choice
question answering, and proof generation.

Lately, deep learning models have shown im-
pressive performance on tasks such as these, in
particular transformer-based models such as BERT
(Devlin et al., 2019) and GPT-3 (Brown et al.,
2020). However, the models can be distracted
easily by trap words, syntactic variations (Kass-
ner and Schütze, 2020), or negation (Kassner and
Schütze, 2020; Ettinger, 2020; Hossain et al., 2020,
2022; Helwe et al., 2021). Hence, the question
of whether these models can logically reason on

1https://github.com/LogiTorch/logitorch

text is still open (Niven and Kao, 2019; Helwe
et al., 2021). New models are being created in-
cessantly (e.g., LogiGAN (Pi et al., 2022) and
Logiformer (Xu et al., 2022) in 2022), and new
datasets are being created to evaluate these mod-
els, including, e.g., LogiQA (Liu et al., 2021b) and
ProofWriter (Tafjord et al., 2021). The initiative of
open-sourcing toolkits has accelerated the progress
in the field of natural language processing, driven
by projects such as Transformers (Wolf et al., 2020)
from HuggingFace and Stanza (Qi et al., 2020)
from Stanford. However, this progress has not yet
arrived in the field of logical reasoning: researchers
still have to find and download different models,
parameterize them, find the corresponding datasets,
bring them into suitable formats, and fine-tune the
models. The datasets are maintained on different
Web pages, exhibit different formats (JSON vs. full
text, numerical vs. textual labels, etc.), and follow
different conventions, which makes it cumbersome
to apply one model across several sources. The
models themselves are implemented in different
frameworks, have different input and output for-
mats, require different dependencies, and differ in
the way of running them, which makes it burden-
some to exchange one model for another. Some
models are not even available online, but have to
be re-implemented from scratch based on the di-
agrams in the scientific publications. All of this
hinders reproducibility, re-usability, comparability,
and ultimately scientific progress in the area.

In this paper, we propose to bring the benefits of
open source libraries to the domain of logical rea-
soning: we build a Python library, LogiTorch, that
includes 14 datasets and 4 implemented models for
3 different logical reasoning tasks. All models can
be called in a unified way, all datasets of one task
are available in the same standardized format, and
all models can be run with all datasets of the same
task. All models have been re-implemented from
the research papers that proposed them, and they

https://github.com/LogiTorch/logitorch
https://github.com/LogiTorch/logitorch


have been validated by subjecting them to the same
experiments as the original papers, with compara-
ble results. More models and benchmarks are in
preparation. LogiTorch works on top of PyTorch
(Paszke et al., 2019), and uses the Transformers
library. It also includes utility functions used for
preprocessing, such as coreference resolution and
discourse delimitation.

The rest of the paper is organized as follows.
Section 2 discusses the design and components
of LogiTorch, and describes the datasets, utility
functions, and models. Section 3 shows the ex-
perimental results of our implemented models on
different logical reasoning tasks. We conclude in
Section 4.

2 LogiTorch

LogiTorch is our Python library for logical reason-
ing on natural language text. Figure 1 shows the
tree structure of our library. It is built on top of
PyTorch and consists of 5 parts:
Datasets. We gathered different logical reasoning
datasets that allow users to evaluate the reasoning
capabilities of deep learning models on natural lan-
guage. Once a dataset is called from LogiTorch, it
is downloaded, and wrapped into an object that in-
herits the Dataset class of PyTorch. This means that
all datasets are accessible via the same interface.
We describe the datasets in detail in Section 2.1.
Data Collators. Different models require differ-
ent preprocessing steps for the same data and same
task: one model may work on numerical vectors,
the other on textual input. Hence, we designed, for
each pair of a dataset and a model, a data collator
that brings the dataset into the format required by
the model.
Utilities. Some models require supplementary fea-
tures in addition to the input text. For example,
the DAGN model (Huang et al., 2021) requires the
discourse structure of the input in order to create a
logical graph representation of it. For such cases,
LogiTorch provides different utility functions, most
notably for discourse structure analysis, corefer-
ence resolution, and logical expression extraction,
which we discuss in Section 2.2.
Models. LogiTorch provides several deep learn-
ing models that have been designed to perform
logical reasoning tasks such as proof generation
and textual entailment. For each model, we ei-
ther provide an implementation from scratch, or a
wrapper over its original implementation. For the

LogiTorch
datasets

qa
mcqa
proof_qa
te

data_collators
utilities
models
pl_models

Figure 1: Tree structure of LogiTorch

transformer-based models, we use the Transform-
ers library from HuggingFace for the implemen-
tation of the models. We describe the models in
detail in Section 2.3.
PyTorch Lightning Models. For each imple-
mented model, we also provide a PyTorch
Lightning version. It includes the model, the
optimizer, the training loop, and the validation
evaluation. For example, the PRover model (Saha
et al., 2020) has a PyTorch Lightning version
called PLPRover. This allows users to play with
features such as multi-GPU and fast-low precision
training without modifying the training loop.

2.1 Datasets
The current implemented datasets focus on eval-
uating the reasoning capabilities of deep learning
models. They cover four tasks: Multiple Choice
Question Answering (MCQA), Question Answer-
ing (QA), Proof Generation, and Textual Entail-
ment (TE). Table 1 shows the task and the number
of instances of each dataset. Let us now describe
each task and the associated datasets.

Multiple Choice Question Answering (MCQA)
is the task of choosing the correct answer to a ques-
tion from a list of possible answers. Here is an
example taken from the LogiQA dataset (Liu et al.,
2021b):

Context: David knows Mr. Zhang’s friend Jack,
and Jack knows David’s friend Ms. Lin. Ev-
eryone of them who knows Jack has a master’s
degree, and everyone of them who knows Ms.
Lin is from Shanghai.
Question: Who is from Shanghai and has a mas-
ter’s degree?
Choices: (A) David (B) Jack (C) Mr. Zhang (D)
Ms. Lin

We implement the following MCQA datasets,



Dataset Task Training Instances Validation Instances Testing Instances

AR-LSAT MCQA 1,630 231 230
RecLor MCQA 4,368 500 1,000
LogiQA MCQA 7,376 651 651
RuleTaker QA 587,922 84,030 173,496
ProofWriter QA/Proof Generation 585,860 85,520 174,180
ParaRules Plus QA 360,000 64658 10,798
AbductionRules QA 80,024 11,432 22,928
ConTRoL TE 6,719 799 805
SNLI TE 550,152 10,000 10,000
MNLI TE 392,702 20,000 20,000
RTE TE 2,490 277 3000
Negated SNLI TE - - 1,500
Negated MNLI TE - - 1,500
Negated RTE TE - - 1,500

Table 1: Datasets implemented in LogiTorch

which all require reasoning capabilities to choose
the correct answer:
AR-LSAT (Zhong et al., 2021) is a dataset that
was constructed by selecting the analytical reason-
ing section of 90 LSAT exams from 1991 to 2016.
LogiQA (Liu et al., 2021b) assesses the logical
deductive ability of language models for the case
where the correct answer to a question is not explic-
itly included in the question. The corpus includes
paragraph-question pairs translated from the Na-
tional Civil Servants Examination of China.
ReCloR (Yu et al., 2019) is a corpus consisting
of questions retrieved from standardized exams
such as LSAT and GMAT. To adequately evaluate
a model without allowing it to take advantage of
artifacts in the corpus, the testing set is split into
two sets: the EASY set where the instances are
biased, and the HARD set where they are not.

Question Answering (QA) is the task of answer-
ing a question given a context. Here is an exam-
ple:

Context: Erin is young. Erin is not kind. If
someone is young and not kind then they are big.
Question: Erin is big ?
Answer: True

Again, we implement the QA datasets that focus
on reasoning:
RuleTaker (Clark et al., 2021) is a set of many
datasets to evaluate the deductive ability of lan-
guage models. Each dataset consists of facts and
rules and a boolean question. The model has to per-
form logical deductions from the rules and facts in
order to answer the question. The datasets includes
synthetically generated subsets that require differ-
ent depths of reasoning, i.e., different numbers of

deduction steps to answer a question. The dataset
also includes the Bird dataset (which showcases
McCarthy’s problem of abnormality (McCarthy,
1986)), the Electricity dataset (which simulates the
functions of an appliance), and the ParaRules cor-
pus (where crowd workers paraphrased sentences
such as “Bob is cold” to “In the snow sits Bob,
crying from being cold”).
ParaRules Plus (Bao, 2021) is an improved ver-
sion of ParaRules (Clark et al., 2021). It has more
examples for the instances with larger reasoning
depths.
Abduction Rules (Young et al., 2022) is a dataset
that evaluates the abductive reasoning capabilities
of language models. It is generated similarly to
ParaRule Plus, but in this task, the model has to
generate an answer to explain an observation.

Proof Generation is an extension of the QA task,
where each answer has to be accompanied by a
proof. Here is an example:

Context: Fact 1: Erin is young.
Fact 2: Erin is not kind.
Rule1: If someone is young and not kind then
they are big.
Question: Erin is big ?
Answer: True
Proof: (Fact 1 & Fact 2) → Rule 1

We have one dataset so far, ProofWriter (Tafjord
et al., 2021), which was designed similarly to the
RuleTaker datasets. However, the ProofWriter
dataset contains proofs for the answer of each ques-
tion. Furthermore, there is a variant of the dataset
that considers the open-world assumption.

Textual Entailment (TE, also RTE) is the task of
predicting whether a premise entails or contradicts



1 import pytorch_lightning as pl
2 from pytorch_lightning.callbacks import ModelCheckpoint
3 from torch.utils.data.dataloader import DataLoader
4
5 from logitorch.data_collators.ruletaker_collator import RuleTakerCollator
6 from logitorch.datasets.qa.ruletaker_dataset import RuleTakerDataset
7 from logitorch.pl_models.ruletaker import PLRuleTaker
8
9 train_dataset = RuleTakerDataset("depth-5", "train")

10 val_dataset = RuleTakerDataset("depth-5", "val")
11
12 ruletaker_collate_fn = RuleTakerCollator()
13
14 train_dataloader = DataLoader(train_dataset, batch_size=32, collate_fn=ruletaker_collate_fn)
15 val_dataloader = DataLoader(val_dataset, batch_size=32, collate_fn=ruletaker_collate_fn)
16
17 model = PLRuleTaker(learning_rate=1e-5, weight_decay=0.1)
18
19 checkpoint_callback = ModelCheckpoint(
20 save_top_k=1,
21 monitor="val_loss",
22 mode="min",
23 dirpath="models/",
24 filename="best_ruletaker.ckpt",
25 )
26 trainer = pl.Trainer(accelerator="gpu", gpus=1)
27 trainer.fit(model, train_dataloader, val_dataloader)

Listing 1: Training the RuleTaker Model

1 from logitorch.pl_models.ruletaker import PLRuleTaker
2
3 model = PLRuleTaker.load_from_checkpoint("models/best_ruletaker.ckpt")
4
5 context = "Bob is smart. If someone is smart then he is kind."
6 question = "Bob is kind."
7
8 model.predict(context, question)

Listing 2: Predicting with the RuleTaker Model

a hypothesis. Here is an example:

Premise: The two boys are in martial arts poses
in an outside basketball court.
Hypothesis: The two boys are not outdoors.
Answer: Contradiction

SNLI (Bowman et al., 2015) is a large human-
annotated corpus of premise-hypothesis pairs that
are labeled with “entailment”, “contradiction”, or
“neutral”. The premises of this dataset are image
captions from Flickr30k, while its hypotheses were
generated by human annotators.
MNLI (Williams et al., 2018) is a large dataset that
was labeled in the same way as SNLI. However,
unlike SNLI, MNLI covers different text genres
such as fiction, telephone speech, and letters. It
also has longer instances.
RTE (Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007, 2008; Bentivogli et al.,
2009) is a much smaller dataset than SNLI and
MNLI. It has just two classes, “entailment” and
“non-entailment”.
Negated TE (Hossain et al., 2020) is a testing
set of benchmarks to evaluate the understanding
of negation in language models. Each negated

benchmark was created by randomly selecting 500
premise-hypothesis pairs from SNLI, MNLI, and
RTE datasets and introducing the negation “not”.
For each pair, three new pairs were generated
(negated premise/hypothesis, premise/negated hy-
pothesis, and negated premise/negated hypothesis).
ConTRoL (Liu et al., 2021a) is a dataset of
context-hypothesis pairs to evaluate contextual rea-
soning capabilities over long texts. In contrast to
other TE datasets, the corpus consists of passage-
long premises, and it evaluates different types of
reasoning such as analytical or temporal reasoning,
which makes this task more challenging.

2.2 Utilities

LogiTorch implements several utility functions that
can be used for feature engineering:
Coreference Resolution is the task of finding all
mentions in a text that refer to the same entity. For
example, in “Zidane is one of the best footballers.
He won the World Cup in 1998”, the words “Zi-
dane” and “he” refer to the same person. Coref-
erence resolution is used by the Focal Reasoner
model (Ouyang et al., 2021) to construct a graph of



fact triples, where the same mentions are connected
with an undirected edge. In LogiTorch, we im-
plemented a wrapper over a finetuned SpanBERT
(Joshi et al., 2020) for coreference resolution.
Logical Expression Extraction is the task of ex-
tracting a logical representation from a text, in or-
der to infer new logical expressions. For example,
the sentence “If you have no keyboarding skills,
you will not be able to use a computer” can be split
into α = “you have no keyboarding skills” and β
= "you are not be able to use a computer”. The
sentence can then be rewritten as α → β. From
this, we can infer by transposition that ¬β → ¬α,
which corresponds to “If you are able to use a com-
puter, you have keyboarding skills”. The LRea-
soner model (Wang et al., 2022) uses this utility
function to extend the input with logical expres-
sions. In LogiTorch, we developed a wrapper over
the code provided by LReasoner for this purpose.
Discourse Delimitation is the task of splitting a
text into elementary discourse units (EDU). It is
used for the rhetorical structure theory (RST), in
which it is a tree representation of a text where
the leaves are EDUs, and the edges are rhetorical
relations. For example, “A signal in a pure analog
system can be infinitely detailed, while digital sys-
tems cannot produce signals that are more precise
than their digital unit” is split into two EDUs: “A
signal in a pure analog system can be infinitely
detailed”, and “digital systems cannot produce sig-
nals that are more precise than their digital unit”.
The DAGN model (Huang et al., 2021) requires
EDUs to construct a graph of discourse units.

2.3 Models

LogiTorch currently implements four models:
RuleTaker (QA task) (Clark et al., 2021) is a
RoBERTa-Large model (Liu et al., 2019) that has
been finetuned first on the RACE dataset (Lai et al.,
2017), and then finetuned again for rule-based rea-
soning. The model takes as input facts and rules
and a boolean question. The output is either True
or False. The RoBERTa model has a similar archi-
tecture to BERT, but performs better on many NLP
tasks. This is because it is pretrained for a longer
period, with large batches, and on a larger dataset.
The pretraining task is only the Masked Language
Modeling (MLM) task, but the masked tokens are
changed after each training epoch.
ProofWriter (QA and proof generation)
(Tafjord et al., 2021) is a T5 model (Raffel et al.,

2020) finetuned to perform rule-based reasoning.
It takes as input facts and rules and a question.
The output is either True, False, or Unknown (if
the trained dataset considers the open-world as-
sumption). T5 is a text-to-text transfer transformer
that was pretrained on a variety of NLP problems
such as textual entailment, coreference resolution,
linguistic acceptability, and semantic equivalence.
PRover (QA and proof generation) (Saha et al.,
2020) is built on RoBERTa with three modules:
the QA module, Node module, and Edge module.
The QA module is responsible for answering a
question as either True or False. The Node and
Edge modules are responsible for generating proofs.
The Node module predicts the relevant rules and
facts used to generate the answer, and the Edge
module predicts the link between two relevant facts
and between a relevant fact and a relevant rule.
BERTNOT (TE task) (Hosseini et al., 2021) is a
BERT model that is pretrained using the unlikeli-
hood loss and knowledge distillation functions for
the MLM task to model negation. Then it is fine-
tuned on textual entailment tasks. This model is
more robust on examples containing negations, and
performs better on the negated NLI dataset than the
original BERT.
Future releases will include newer models such as
LReasoner (Huang et al., 2021), Focal Reasoner
(Ouyang et al., 2021), AdaLoGN (Li et al., 2022),
Logiformer (Xu et al., 2022), and LogiGAN (Pi
et al., 2022).

2.4 Library Usage

Listing 1 shows a detailed example of how a model
can be trained on a rule-based reasoning dataset
for QA. The RuleTaker model is trained on its cor-
responding dataset. In Lines 9-10, we initialize
the training and validation datasets with the Rule-
TakerDataset. We specify which sub-dataset and
which split we want to use. In Line 12, we initialize
the RuleTaker data collator for preprocessing the
datasets. We then use the Dataloader to pre-load the
datasets and use them as batches. In Line 17, we ini-
tialize the PyTorch Lightning version of RuleTaker
and specify the learning rate, and the weight decay.
PyTorch Lightning provides the ModelCheckpoint,
which allows monitoring the validation loss and
saving the best model. In Line 26, we use the Py-
Torch Lightning’s Trainer to automate the training
loop. It takes several parameters, including the
accelerator, which allows training on different de-



Depth
RuleTaker1 PRover2 ProofWriter2

LogiTorch Original LogiTorch Original LogiTorch Original3

0 99.9 100 100 100 99.9 100
1 98.6 98.4 99.7 99.0 98.0 99.1
2 99.1 98.4 99.5 98.8 96.7 98.6
3 99.2 98.9 99.7 99.1 97.2 98.5
4 99.7 99.2 99.7 98.8 98.1 98.7
5 99.3 99.8 99.5 99.3 99.1 99.3
All 99.3 99.2 99.7 99.3 98.4 99.2

Table 2: Accuracies of different models for the QA task at different reasoning depths. 1 Depth-5 of the testing set of
RuleTaker dataset. 2 Depth-5 of the testing set of ProofWriter dataset. 3 The original implementation uses a (more
powerful) T5-11B model.

vices such as CPUs, GPUs, and TPUs. Finally,
we train the model with the fit function. Future
releases will also provide pre-configured pipelines
to train models.

Listing 2 shows the code for testing the best-
saved model of Listing 1. In Line 3, we load the
best model. In Line 8, we use the predict function,
which takes as input a context and a question, and
predicts either 0 (for False) or 1 (for True).

Dataset LogiTorch’s BERTNOT Original BERTNOT

SNLI
Val 90.4 89.00
Neg 47.8 45.96

MNLI
Val 83.2 84.31
Neg 64.0 60.89

RTE
Val 65.6 69.68
Neg 57.7 74.47

Table 3: Results of our BERTNOT implementation on
different textual-entailment datasets.

3 Evaluation

We compared the performance of each model in
LogiTorch to the performance of the model in the
original paper, on the same datasets: we trained
the Ruletaker model on the training set of Rule-
Taker with language reasoning paths up to depth
5 and tested it on its testing set; we trained the
PRover and ProofWriter models on the training set
of ProofWriter with language reasoning paths up
to depth 5 and tested them on the corresponding
testing set; and we trained the BERTNOT model (a
pretrained BERT Base Cased model) on the MLM
task, with the negated Wikipedia corpus provided
by Hosseini et al. (2021) (included in LogiTorch),
finetuned the model on each TE dataset (MNLI,
SNLI, and RTE) and tested it on its negated coun-
terparts (Hossain et al., 2020). All models use the
the same settings as in the original papers.

Table 2 shows the results of the three differ-
ent models on the QA task at different reasoning
depths. Our model implementations achieve near-
perfect accuracies, which are comparable to the
performance in the original papers. Table 3 shows
the performance on the TE task on each TE training
dataset (SNLI, MNLI, and RTE). Again, our model
achieves nearly the same results as reported in the
original paper (Hosseini et al., 2021) on the MNLI
and SNLI datasets. We are getting lower results on
the RTE dataset. We assume that this is because
the finetuned model has a high variance due to the
small size of the training set of RTE.

4 Conclusion

We have introduced LogiTorch, a Python library for
logical reasoning on natural language. It is built on
top of PyTorch in combination with the Transform-
ers and PyTorch Lightning libraries. LogiTorch in-
cludes an extensive list of textual logical reasoning
datasets and utility functions, and different imple-
mented models. The library allows researchers and
developers to easily use a logical reasoning dataset
and train logical reasoning models with just a few
lines of code. The library is available on GitHub
and is under active development.

For future work, we will add new datasets, and
implement models such as DAGN, Focal Reasoner,
and LogiGAN with their utility functions for fea-
ture engineering. Finally, we want to invite re-
searchers and developers to contribute to Logi-
Torch. We believe that such a library will lower the
hurdles to research in the area, foster re-usability,
encourage comparative evaluation, strengthen re-
producibility, and advance the culture of open soft-
ware and data.
Acknowledgements. This work was partially
funded by ANR-20-CHIA-0012-01 (“NoRDF”).

https://github.com/LogiTorch/logitorch


5 Ethical Considerations

Users of LogiTorch should distinguish the datasets
and models of our library from the originals. They
should always credit and cite both our library and
the original data source, as in “We used Logi-
Torch’s (Helwe et al., 2022) re-implementation of
BERTNOT (Hosseini et al., 2021)”. These condi-
tions are mentioned on our GitHub page.

References
Qiming Bao. 2021. Pararule plus: A larger deep multi-

step reasoning dataset over natural language.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Confer-
ence on International Joint Conferences on Artificial
Intelligence, pages 3882–3890.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics.

Danilo Giampiccolo, Hoa Trang Dang, Bernardo
Magnini, Ido Dagan, Elena Cabrio, and Bill Dolan.
2008. The fourth pascal recognizing textual entail-
ment challenge. In TAC.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B Dolan. 2007. The third pascal recog-
nizing textual entailment challenge. In ACL-PASCAL
workshop on textual entailment and paraphrasing.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In The Second PASCAL Challenges
Workshop on Recognising Textual Entailment.

Chadi Helwe, Chloé Clavel, and Fabian Suchanek. 2022.
Logitorch: A pytorch-based library for logical rea-
soning on natural language. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations.

Chadi Helwe, Chloé Clavel, and Fabian M Suchanek.
2021. Reasoning with transformer-based models:
Deep learning, but shallow reasoning. In 3rd Confer-
ence on Automated Knowledge Base Construction.

Md Mosharaf Hossain, Dhivya Chinnappa, and Eduardo
Blanco. 2022. An analysis of negation in natural
language understanding corpora. In Annual Meeting
of the Association for Computational Linguistics.

Md Mosharaf Hossain, Venelin Kovatchev, Pranoy
Dutta, Tiffany Kao, Elizabeth Wei, and Eduardo
Blanco. 2020. An analysis of natural language infer-
ence benchmarks through the lens of negation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9106–9118.

Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R De-
von Hjelm, Alessandro Sordoni, and Aaron Courville.
2021. Understanding by understanding not: Model-
ing negation in language models. In North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Yinya Huang, Meng Fang, Yu Cao, Liwei Wang, and
Xiaodan Liang. 2021. Dagn: Discourse-aware graph
network for logical reasoning. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5848–5855.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Annual Meeting of
the Association for Computational Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794.

https://github.com/LogiTorch/logitorch


Xiao Li, Gong Cheng, Ziheng Chen, Yawei Sun, and
Yuzhong Qu. 2022. Adalogn: Adaptive logic graph
network for reasoning-based machine reading com-
prehension. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7147–7161.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021a. Natural language inference in context-
investigating contextual reasoning over long texts.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13388–13396.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021b. Logiqa: a
challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3622–3628.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

John McCarthy. 1986. Applications of circumscription
to formalizing common-sense knowledge. Artificial
intelligence, 28(1):89–116.

John McCarthy et al. 1960. Programs with common
sense. RLE and MIT computation center Cambridge,
MA, USA.

Allen Newell and Herbert Simon. 1956. The logic
theory machine–a complex information processing
system. IRE Transactions on information theory,
2(3):61–79.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Annual Meeting of the Association for
Computational Linguistics.

Siru Ouyang, Zhuosheng Zhang, and Hai Zhao. 2021.
Fact-driven logical reasoning. arXiv preprint
arXiv:2105.10334.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Xinyu Pi, Wanjun Zhong, Yan Gao, Nan Duan, and
Jian-Guang Lou. 2022. Logigan: Learning logical
reasoning via adversarial pre-training. arXiv preprint
arXiv:2205.08794.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 122–
136.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 3621–3634.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and Nan
Duan. 2022. Logic-driven context extension and data
augmentation for logical reasoning of text. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 1619–1629.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Fangzhi Xu, Jun Liu, Qika Lin, Yudai Pan, and Lin-
gling Zhang. 2022. Logiformer: A two-branch graph
transformer network for interpretable logical reason-
ing. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1055–1065.

Nathan Young, Qiming Bao, Joshua Bensemann, and
Michael Witbrock. 2022. Abductionrules: Training
transformers to explain unexpected inputs. arXiv
preprint arXiv:2203.12186.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2019. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. 2021. Ar-lsat: Investigating analytical
reasoning of text. arXiv preprint arXiv:2104.06598.


